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Abstract-The transient response of three types of fins (longitudinal, spine and annular), each with three 
possible shapes (rectangular, triangular and parabolic) is analyzed using numerical solutions. Four initial 
conditions involving step changes are examined. Two initial conditions concern the heating up of fins by 
exposing the base to constant temperature or constant heat flux. Two other initial conditions concern the 
cooling down of operating fins by dissipating heat to the surroundings exclusively, or together with heat 
dissipation to the base. Characteristics and detailed results from which the temperature distribution at any 

time can be predicted are presented graphically. 

INTRODUCTION 

THE TRANSIENT behavior of fins is important in various 

applications, such as the cooling of electronic com- 
ponents, solar collectors, radiators and compact heat 
exchangers. Although, in most cases, fins operate in 
transient conditions, they are usually designed for 
steady-state operation. Even a car radiator, for ex- 
ample, operates mostly under transient conditions due 

to the engine load, water temperature and sur- 
rounding air velocity that change constantly. For such 
a case, designing for the worst steady-state conditions 
is appropriate. For the cooling of electronic com- 
ponents, particularly in aeronautical systems that 
operate for a short time, or in systems in which weight 
reduction is vital, the steady-state design would result 
in overdesign for the operating period. Accurate tran- 
sient analysis enables one to design fins that would 
fail in steady-state operation but are sufficient for the 
desired operating period. Such a design will reduce 
the total weight significantly. 

The performance of fins under steady-state con- 
ditions has been studied in considerable detail, but the 
transient response of such surfaces to changes in either 
base temperature or base heat flux has not received 
much attention. Chapman [I] determined the tran- 
sient response of an annular fin to a step change in 
the base temperature. The solution obtained by the 
separation of variables is given in the form of a series. 
Suryanarayana [2] used the Laplace transform tech- 
nique which enables him to derive a rapidly con- 
vergent approximate solution for the early part of 
the transient. Aziz and Na [3] used the coordinate 
perturbation expansion method to obtain the heat 
transfer rate at the fin base. Chang et al. [4] used the 
variational embedding method to solve’the linearized 
partial differential equation (that was imposed on the 
governing equation for the steady-state of a straight 

fin) instead of the original governing equation for the 

fin’s transient response. 
The above studies could also be reviewed by taking 

into consideration the following four categories : 

1. Type and shape of the fin. 
2. Boundary conditions, especially those that cause 

the transient response. 
3. Method of solving. 
4. Nature of results (temperature, heat flux, effi- 

ciency, optimization) and their merit. 

In the first category, annular fins [l] as well as straight 
fins [2-4] have been analyzed, but only for constant 
cross-section shapes. Step changes in the base tem- 
perature [l-4] and step changes in the base heat flux, 
as well as sinusoidal temperature or heat flux [2], were 
examined. Each of the investigators used different 
analytical methods that are generally complicated and 
limited to the simplest shapes. The temperature 
response [l, 21 and the heat transfer rate [3, 41 were 
presented for constant thickness fins. 

In this study, longitudinal, spine and annular fins, 
each with rectangular (constant thickness), triangular 
and parabolic shapes, are examined. Four step 
changes in the base condition are considered: tem- 

perature and heat flux changes, both for heating or 
cooling the fins. The governing equation is solved 
numerically which seems to be the only way to relate 
to all the shapes and conditions. In this study only the 
temperature response is shown since it is basic to 
further analysis and optimization. 

THE GOVERNING EQUATIONS 

Consider one-dimensional conduction in any type 
of fin-longitudinal, spine or annular of non-constant 
thickness 6 and length L. The heat that enters the 
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NOMENCLATURE 

ill, cross-section area, normal to the hcn( flow 
direction [m’] 

B. C variables which distinguish between 
different fins. Table I 

Bi, Biot number, 2/1L/I\ 

C,> specific heat [kJ kg ’ C‘ ‘1 
/I heat transfer coeflicicnt [W m ’ C ‘1 
h thermal conductivity [W m ’ C ‘1 
L tin length [m] 
I A/ cut fin Icngth [m] 
111, fin parameter. LV;(2h!h-6,,) 
I1 constant for fin shape definition, 0, I, or 2 

P fin perimeter [m] 
(2,) dimensionless base heat rate 

q” base heat flux [W m ‘1 

4, annular fin base radius [m] 
T temperature [ C] 
T, ambient tcmpcrature [ Cl 
/ time [s] 

I distance from the tin base and normal to it 

bl 

/ longitudinal fin width [ml 

Greek symbols 
y. thermal diffusivity [m’ s 1 
ci tin thickness [m] 
0 tcmperaturc excess of tin ovel- 

surroundings [ C] 

T dimensionless time, rt!L’ 

4 normaliz.ed temperature. O:O,,. 

Subscripts 

0 tin base 
~ non-dimensional 

;I annular 

i indicating the location ofthc element along 
the fin 

i indicating the time step 
I longitudinal 
\ Spine 
5s steady-state. 

fin’s base is partially dissipated to the surroundings. 

assuming constant-average heat convection co- 
efficient, h. and partially heats up the fin (in the 
instance of heating). 

The heat balance for a differential control volume 
of length d.v. assuming no heat is generated within the 

fin [5]. is given by : 

where x is measured from the fin base and is normal 
to it, P and A,, are the fin perimeter and area normal 
to the heat flow at distance .Y from the fin base, and I 
is the time elapsed from the step change at the base. 
The first term results from the conductivity through 
the cross-section of the fin. The second term results 
from the convection from the fin surface to the sur- 
roundings including the arc length (which is often 
neglected), and the third term results from the tran- 
sient change of internal energy of the fin which is 
reduced to zero for steady-state operation. The con- 
vection coefficient, 11, is considered to be constant over 
the tin surface in this study. although it could easily 
be expanded to be tcmpcraturc or location dependent. 

Introducing the non-dimensional variables : 
A = A,,;A,,. 6 = (Vii,,, .F = .Y,‘L. 4= (T-T,), 

(T,,,,,- T, ), a = k/pC,, and z = at/L2 where r,,, is 

the base temperature at steady-state (reached 
eventually for heating and already existing for 

cooling). into equation (I) and assuming constant 
conductivity, results in : 

Three common tin shapes. for the three types 01 
fins, can be defined by a single equation : 

d ZZ (I -.j)” 13) 

11 = 0 represents the constant thickness fin which has 
a rectangular shape, II = I describes the triangular fin. 

and II = 2 corresponds to the parabolic fin. 
The fin pcrimetcr, P, and the normalized arca. .i. 

are defined differently for each of the three types of 
fins in Table I. Introducing their definitions and 

Table I Parameter expressma 

Fin Longitudinal Spmc Annulal- 

P 2(Z_th) TMS 4n(R,,+.s) 

A,, (I -_i)" (, 7)“’ 
c‘ 

! ! l+A- (I- x7)’ 
0 
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derivatives into equation (2) yields a second-order 
partial differential equation. 

x [n’(l -y2 (sJ+ p (4) ;t _ o 

where the fin parameter m, = &,/((2h)/(k&,)) for the 
three types of fins. Parameters B and C are defined in 
Table 1 for each type of fin. 

In order to solve equation (4) one initial condition 
and two boundary conditions are needed. In principle, 
fins could operate by exposing their base to either 
constant temperature or constant heat flux. The 
steady-state operation does not distinguish between 
these two possibilities since one dictates the other. 
But, for transient operation, when the fin starts to 
operate, the path to the steady-state temperature dis- 
tribution differs in the two cases. Therefore, it is of 
interest to see the transient response of fins to the step 
connection as well as the disconnection of temperature 
or heat flux sources to or from the base. Therefore, 
these four base conditions are examined in this study 
and will be defined in detail later on. 

Case 1. Sudden exposure to constant temperature 

In this case, initially, the entire fin is maintained at 
the environmental temperature, T,. At time t = 0, 

the fin base is suddenly exposed to a higher tempera- 
ture, T,, the temperature increasing with time and 
with larger time delays at points distant from the base. 
The temperature rises all over the fin until steady-state 
distribution is reached. The heat rate entering the fin 
increases until it is stabilized in steady-state and all 
the heat entering the fin is dissipated to the sur- 
roundings. In this case, T,,S, is easily defined and is 
kept constant during the process ; thus 4 = 1 at all 
times. The boundary and initial conditions are : 

Lll= 1 

a+ 
-= -BiL4 at x=& ai 

c#J(R,O) = 0. (54 

The second boundary condition is a result of the dis- 
sipation of heat at the fin tip to the ambient. This 
condition will be considered throughout the present 
study, although other tip conditions could easily be 
added [6]. Lr is the length from the fin base where the 
fin terminates. L represents the sharp tip for triangular 
and parabolic shapes, but for safety it can be cut off 
at L, [7]. 

Case 2. Sudden exposure to constant heatJlux 
In this case, the initial and steady-state temperature 

distributions are identical to those in the previous 
case. At time t = 0, the fin base is suddenly exposed 

to a constant heat flux qs. The base temperature rises 
but the slope (heat flux) remains constant. Therefore, 
T,,$, can be defined only at steady-state with @0 
increasing from 0 to 1. The boundary and initial con- 
ditions are : 

84 48 

% .j= o 
= --=Qo 

kO,,,, 

(5b) 

Case 3. Sudden decrease of base temperature 

In this case, the fin is initially at a steady-state 
temperature distribution. At time t = 0, the base tem- 
perature suddenly decreases to a temperature lower 
than T,,s, and the fin cools to a second steady-state 
distribution. Although any new base temperature can 
be examined, in this study the base temperature 
decreases to T,. The definition of T,,s, is problematic, 
considering the new steady-state distribution ; there- 
fore, T,,, for the normalization of 4 will be considered 
regarding the initial condition. By decreasing the base 
temperature, the fin dissipates heat and cools to the 
surroundings and to the base. The boundary and 
initial conditions are : 

Lo = 0 

84 
Z’ 

-BiL4 at X = t, 

4(% 0) = #JG)SE. (5c) 

Case 4. Sudden decrease of base heatjux 
In this case, as in the previous one, the fin is initially 

at a steady-state temperature distribution. At time 
t = 0, the base heat flux is suddenly decreased to a 
lower value and the fin cools to a second steady- 
state distribution. Although any new heat flux can be 
examined, in this study the base heat flux decreases to 
zero, which means that no heat interaction takes place 
between the fin and its base during the cooling process. 
The difference between this case and the previous one 
is that in this instance heat is dissipated only to the 
surroundings. T,,,, is defined in the same way as in the 
previous case. The boundary and initial conditions 
are : 

a+ 
--= -B&4 at X=L, a2 

RESULTS AND DISCUSSION 

The differential equation was solved numerically by 
the finite difference method [8] (explicit form) for the 
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three types of fins, each with the three possible shapes. 
Forward and central differences were used for the 
time, Z, and distance, .f. respectively, in the numerical 
method. Equation (4) in its explicit form : 

where i and ,j indicate the distance and time steps 
respectively, B and C are shown in Table 1 and,fl.e) 
is defined as : 

Two stability criteria 

and 

A? 1 
A.\” ’ 2 + Cb?:f.(.t) 

are defined from equation (6). 

(7) 

(8) 

(9) 

It can be seen from Table I that as long as R,, > I. 
B of the spine is the largest of the three. Introducing 
B of the spine yields that A.? should bc smaller than 
(I -.f)/n. Keeping in mind that X varies from 0 to 
I -A.\‘, then the smallest limit for A.I’ is A.t/2 for the 

parabolic (n = 2) spine at the tip element. For all 
other fin shapes, if n = 0 or 1 the first stability criterion 
is satisfied. Notice that at only two elements distant 
from the tip of the parabolic spine, the criterion is 
satisfied. Therefore, the parabolic spine was cut at a 

two element distance from the edge by applying the 
tip boundary condition at cr = I -2A.U. without los- 
ing the accuracy concerning real fins (that are usually 
cut). However, A.U is chosen to be l/200. 

Assuming cS,JL cc 1J.Q is equal to mf for rz = 0, 
varies from mf to nz,z;A.t for :I = 1, and varies from 
nzf to &/A.\:’ for n = 2. Assuming further that 
fi,,/: = 0 (either very wide or insulated sides of longi- 
tudinal fins), then C’ from Table I equals I or 2. 
Because A.7 is very small, the second term of the 
denominator of equation (9) can be neglected in most 
cases (n = 0 or 2). It cannot be neglected when 
approaching the tip of the parabolic fin. In this study 
AT/A.? = 0.2 was chosen. This selection leads to 
unbounded solutions for spines with large fin param- 
eter (nz, = 5) at the five clemcnts nearest the tip. The 
difficulty was overcome by cutting the parabolic fins 
not too far from the sharp edge, as was described in 
the previous paragraph. 

This solution produced many interesting figures. 01 
which a few are shown here. In each case examined. 

an effort was made to present the most useful way of 
obtaining information concerning the transient 
response of the fins. 

Fins arc usually designed and chosen on the basis 
of their efficiency, effectiveness or optimum charac- 
teristics. in steady-state operation the design and opti- 
mization are well defined. An optimum fin is dcfincd 
as a fin that dissipates maximum heat by minimum 
weight. This definition is valid for all design objectives. 

But, in transient operation the optimization and the 
design of fins arc not obvious, mainly because two 
heat rates are involved. The heat rate removed from 

the base and the heat dissipated to the surroundings 
become equal only in steady-state. Therefore. the 
design constraint would dictate the optimization pro- 
ccdurc. Moreover. for cooling of electronic com- 
poncnts the heat rate is dictated and the designer is 
interested in decreasing the base tcmpcrature as much 
as possible. It is not easy to decide what transient 
performance is best. The answer could be different for 
difkrcnt goals. If the fin is used for removing heat 
from the base, then the highest amount of heat trans- 
ferred at a specified time should be maximkcd. Buk if 
the fin is used as a heater then the heat rate convected 
to the surroundings should be maximized. If the fin is 
used to rcducc the base tempcraturc. then the hasc 
tcmpcraturc should be minimized al ;I spccificd time. 
In any cast. this paper presents a first step towards 
the design and analysis of transient operating tinh. 

The first cast is applicable for systems in which 
there is a constant base temperature and one is intcr- 
estcd in dissipating heat from the base or heating the 
surl-oundings. This cast is realized in fin tube heat 
exchangers, for example. when the fluid in the tuhss 
has a \#cry high heat transfer cocffkicnt. The second 
case is applicable mostly to cooling of electronic 
cquipmcnt uhcre the heat rate is dictated at the tin 
base. In this case. one is probably intcrcstcd in reduc- 
ing the base temperature. The cooling casts (cazcs .T 
and 4) can be related to two purposes. The first pur- 

pose is to dctinc the time required for the tin to reach 
the ambient temperature when heating takes place in 
the same way as in the first two cases. The second 
purpose ts rclatcd to future analysis of periodical step 
changes at the base. in which the liequcncy of the 
changes is higher than the frcqucncy ncedcd to reach 
steady-state in heating and in cooling. In rhk 
situation. one of’ the first two cases should hc con- 
bincd with one of the last two cases. 

For transient behavior offins, one ol‘the important 
paramctcrs would therefore be the time required fol 
a fin to reach steady-state. In the prcscnt study. steadq- 
state operation was indicated if the temperature 
changes were less than 0. I ‘%, during AT = 0.01. An 
aluminum spine of IO cm length. for example. will 
reach steady-state. by the above definition, if the tcm- 
peraturc changes were less than 0.1 C during 3 min. 

(‘a.%, 1 
In Fig. I, the normalized temperature distribution 

development for longitudinal fins with rectangular, 
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FIG. 1. Normalized temperature of longitudinal fins (case 1). FIG. 3. Normalized tip temperature at steady-state (case 1). 

I 1.0 
z - Rectangular 

- - Triangular 
- - Parbolic 

1. Longitudinal 

s - Spine 

a - Annular ( RoiL = 2.5 ) 

F 
4 % 0.2 

2 0.0 
0 1 2 3 4 5 

Fin Parameter, mf 

triangular and parabolic shapes is shown. A short 
time after operating the fin (r = 0.01) the temperature 
profiles of all the shapes are almost the same and the 
heating at the base does not yet affect the fin tip. After 
further heating, at r = 0.1, the temperature profile 
lines of the three shapes are separated, although simi- 
lar profiles are shown. The steady-state distribution is 
eventually reached at z = 0.58 for a parabolic shape, 
7 = 0.93 (almost twice) for a triangular shape, and at 
7 = 1.84 (more than three times) for a rectangular 
one. The steady-state temperature profile of the rec- 
tangular fin is concave ; for the triangular fin it is 
approximately linear, but still concave ; and for the 
parabolic fin it is convex. 

The same type of behavior has been observed for 
spines and annular fins. The difference in behavior 
between the fins is characterized by two parameters : 
the time required to reach steady-state and the steady- 
state tip temperature. To enable the user to predict 
the temperature response, the behavior of both par- 
ameters vs the fin parameter are shown in Figs. 2 and 
3, respectively. 

For all the fins and shapes analyzed in this study. 
the time required for reaching steady-state decreases 
as the fin parameter increases, probably due to the 
increase of the heat convection coefficient. The differ- 

__ Rectangular 
- - Triangular 
- - Parbolic 

I- Longitudinal 

s Spine 

a Annular ( RoR = 2.5 ) 

Fin Parameter, mf 

FIG. 2. Dimensionless time required for steady-state (case 
1). 

ence between the steady-state time of different shapes 
is emphasized for smaller fin parameters. All the fin 
types show a much faster response for parabolic 
shapes. This fact will probably dominate the choice 
of shapes because it reaches full operation faster, and 
therefore shows a much higher heat dissipation at any 
time interval during the transient process of heating 
(as will be discussed in further studies, beyond the 
scope of this one). The comparison between fin types 
as shown in Fig. 2 points out that spines are heated 
faster than longitudinal and annular fins. This state- 
ment cannot be comprehensive as long as each fin type 
has its special parameter, such as ROIL for annular 
fins. 

The tip steady-state temperatures of all the fins 
analyzed in this paper are shown in Fig. 3. Once 
again, the annular fin (for R,,/L = 2.5) shows the 
same behavior as the longitudinal fin. The lowest tip 
temperatures are observed in spines, especially for 
rectangular shapes. For longitudinal and annular fins, 
the tip temperature is highest for rectangular shapes 
and lowest for parabolic shapes. Only for spines is the 
tip temperature of the triangular shape higher than 
that of the rectangular shape at low fin parameters 
(mr < 1 .O). As the fin parameter increases, the tip tem- 
perature for all fins decreases until the environmental 
temperature (4 = 0) is reached. Obviously, for those 
cases, the fin could be considered as infinitely long [9]. 

Case 2 
In Fig. 4, the normalized temperature distribution 

advancements for spines with rectangular, triangular 
and parabolic shapes are shown. The steady-state tem- 
perature distribution is much the same as in the pre- 
vious case. The increase of the base temperature is 
clearly shown. In this case, as in the previous one, the 
parabolic-shaped fin requires the least time to reach 
full operation, although the differences in this case are 
minor. 

The principle behavior of other fin types is essen- 
tially the same as for the spine (Fig. 4) only the times 
required for full operation and the tip temperature 
are different. In this case, two main parameters influ- 
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1 .o 

0.2 0.4 0.6 0.8 
Dimensionless Length, x/L 

FIG. 4. Normalized temperature of spines (case 2) 

1.a 
I Longmdinal I 
‘i Spine 

a Annular ( Rol L = 25 1 

Fin Parameter, mf 

PIG. 5. Dimensionless time required for steady-state vs fin 
parameter (case 2). 

ence the temperature response of the fins: the fin 
parameter, m,, and the base heat flux, QO. 

The dimensionless time required to reach steady- 
state for all types of fins and shapes are shown in Fig. 
5. As in the previous case, the rectangular fin requires 

the most time to reach steady-state and the parabolic 
fin the least. Generally, although the steady-state time 
in this case is much higher than in case 1, the same 
order of magnitude can be noticed. The effect of the 
base heat flux. Q,). on the steady-state time for IM, = I 
is shown in Fig. 6. Obviously a higher heat flux 
requires more time to reach steady-state. 

“0.0 0.2 0.4 0.6 0.8 1.0 
Normalized Base Heat Flux, Q, 

FIG. 6. Dimensionless time required for steady-state vs base 
heat flux (case 2). 

_ jl_r.L -_..L_ L-l-, L- 1 

0.2 0.4 0.6 0.8 

2.5 , 

Jo  

I .o 
Normalized Base Heat Flux, Q, 

FIG. 7. Normalized tip temperature at steady-state vs base 
heat flux (case 2). 

The normalized tip temperature for Q, = 0.5 vs the 
fin parameter, m,, is almost identical to Fig. 3 of case 
1, and therefore is not shown. But, the effect of the 
base heat flux on the steady-state tip temperature is 
shown in Fig. 7. For parabolic shapes. the normalized 
tip temperature is not affected by the base heat flux. 
For other shapes, the temperature increases and then 
is stabilized at about Q, = 0.5. 

Cm? 3 
A very detailed description of the normalized tem- 

perature reduction of a constant thickness annular fin 
is shown in Fig. 8. A short time after cooling starts. 

only the part close to the base experiences temperature 
changes. Only at r = 0.1 does the fin tip begin to cool 
and the direction of heat flow is changed to flow from 
the tip towards the base. In the case presented in 
Fig. 8, the whole fin is cooled to the environmental 
temperature at about r = 1. 

The time required to cool down to the ambient 

temperature for all the fin types and shapes is shown 
in Fig. 9. Once again, the parabolic shape response is 
fastest and the rectangular shape response slowest. 
The cooling down process of spines requires less 
time to reach steady-state operation than do other fin 
types. 

Annular Fin - Rectangular 
I 
, 

: r=o.5 
iil~ _lL Lo/ I L--L -L_i.L _-.A T = 1.0 

0.2 0.4 0.6 0.8 I .o 
Dimensionless Length, x/L 

FIG. 8. Normalized temperature of annular fins (case 3). 
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2 2.0 I - Longitudinal 

t 
s Spine 

G 1.5 
a - Annular ( Ro/L = 2.5 ) 

gfG;& 
0 1 2 3 4 5 

Fin Parameter, mf 
0 1 2 3 4 5 
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FIG. 9. Dimensionless time required for steady-state (case FIG. 11. Dimensionless time required for steady-state (case 
3). 4). 

Case 4 

Figure 10 presents the normalized temperature dis- 
tribution of longitudinal fins and spines, each with a 
constant thickness. It can be seen that as the cooling 
process begins, the base temperature decreases rapidly 
while the tip temperature remains constant and even 
rises a bit. Then, a nearly constant temperature is 
reached all over the fin and the cooling process con- 
tinues. In this case, the time required for the fin to 
reach the ambient temperature is longer than in the 
previous case (the fin dissipates heat only to the ambi- 
ent). In Fig. 11, as in Fig. 9, the difference between the 
steady-state time of different shapes is significant- 
the parabolic fin requires much less time than the 
rectangular fin. 

Although the transient temperature distribution 
cannot be and is not aimed at addressing questions 
regarding optimization and selection of fins, by the 
present analysis some preliminary design rules can be 
defined. For the same fin type, operation conditions 
and weight, it is well known that the parabolic shape 
dissipates more heat than other shapes in steady-state. 
Combining with the outcome of the present analysis 
that it also reaches the highest heat in shorter time, 
then it will certainly dissipate more heat and be pre- 

1.0 

8 
< 0.8 
3 
0 
$ 
p. 0.6 
E 
; 

0.2 0.4 0.6 0.8 
Dimensionless Length, x/L 

FIG. 10. Normalized temperature of longitudinal fins and 

spines (case 4). 

ferable for any specified time. In order to confirm this 
speculation further study should be carried out about 
the optimal performance for transient behavior. In 
any case, the present study is a vital step in achieving 
the final goal. 

CONCLUSIONS 

The transient response of three types of fins (longi- 
tudinal, spine and annular) each with three possible 
shapes (rectangular, triangular and parabolic) and 
subject to four cases of heating and cooling were 
analyzed in this study. The governing equations have 
been solved numerically to produce figures by which 
the user is able to predict the temperature distribution 
along the fin at any time. The time required for the fin 
to transfer from one defined steady-state to another 
is presented graphically. In general, more time is 
needed for a fin to heat up than to cool down. In any 
case, the parabolic fin requires significantly less time to 
reach steady-state than do the triangular and certainly 
the rectangular fins, either to heat up or cool down. 

It is well known that parabolic fins have a more 
optimal shape than do triangular or rectangular ones 
(i.e. dissipate more heat with the same volume) in 
steady-state operation. Nevertheless, their use in prac- 
tice is slight mainly due to manufacturing difficulties 
and other costs. Their use in transient operation 
would add one more significant benefit by their ability 
to reach full operation in much less time, as was shown 
very clearly in this study. 
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